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I. INTRODUCTION

In 1932 Carter[1] used the induced emf formulation and a sinu-
soidal current distribution to derive expressions for the mutual imped-
ance between half-wave dipoles. H.E. King[2] extended these results
in 1957 to parallel dipoles in echelon with arbitrary wire lengths.
Baker and LaGrone[3] employed numerical integration for skew dipoles.

These two-segment sinusoidal solutions have been useful for
coupled dipoles with lengths up to about 0.5A. In this range, the
current distribution on each thin-wire antenna is in most cases not
greatly disturbed by the other. More sophisticated techniques are
required, however, for Tonger antennas and for more complex wire con-
figurations. One approach is to reduce the integral equation to a
system of simultaneous linear equations. The unknown constants in
these equations are usually samples of the current function I(2) or
the coefficients in a modal expansion for the current distribution.

In 1967 Yeh and Mei[4] employed such techniques to analyze the
conical-spiral antenna. Programs for arbitrary thin-wire configuratjons
were developed by Tanner and Andreasen[5], Miller and Morton[6], Chao
and Strait[7], and Richmond[8,9,10,11,12]. In References 4, 5 and 6
the current distribution on each wire segment has the form I = A + B
cos ke + C sin ke. Reference 7 uses a piecewise-linear expansion.
References 8 through 12 use a piecewise-sinusoidal expansion with
I = Acos ke + B sin ke. Others who have employed the piecewise-
sinusoidal expansion include Butler[13] and Imbriale and Ingerson[14].

This paper presents the electromagnetic theory for thin-wire
antennas and scatterers. The ambient medium is considered to be iso-
tropic, linear and homogeneous. The analysis is performed in the
frequency domain, and the generator or incident wave may have a real or
complex frequency. The solution satisfies Kirchhoff's current law on
the wire structure, and has favorable properties of convergence and
computational efficiency. The computer programs will be presented
in a future report.

With no significant loss of generality, the wire structure is
considered to be a generalized polygon assembled from straight wire
segments., The formulation and the program have been tested extensively
in radiation and scattering problems with various dipoles, loops, arrays
and wire-grid models of plates, spheres, cones, aircraft and ships.
Although the air-earth or air-water interface is not considered, the
theory and program are useful in many situations involving buried or
submerged antennas and scatterers.



A piecewise-sinusoidal expansion is used for the current distri-
bution. The matrix equation Z I = V is generated by enforcing reaction
tests with a set of sinusoidal dipoles located in the interior region
of the wire. Since the test dipoles have the same current distribution
as the expansion modes, this may be regarded as an application of
Galerkin's method[15]. However, the physical ideas of Rumsey's reaction
concept[16] were more inspirational in this development than the mathe-
matical ideas of the moment method.

On each thin-wire structure, we define a set of terminals or
current-sampling points. Terminals are defined at each corner or bend-
ing point, at each junction where several straight wires intersect, and
at the wire endpoints. For accuracy, no segment should have a length
much greater than A/4. Thus, a long segment may be subdivided by
defining additional sampling points.

With several terminals defined in this manner, the wire structure
is a multiport system. The elements in the open-circuit impedance matrix
are calculated by numerical integration when appropriate, or by closed-
form expressions in terms of exponential integrals. The impedance matrix
is inverted to obtain the short-circuit admittance matrix.

The sinusoidal reaction formulation was developed earlier for wire
structures in free space. The generalization to wires in a conducting
medium with complex frequency is based on electromagnetic similitude
and analytic continuation.

The next section presents the reaction integral equation for thin
wires. The remaining text defines the sinusoidal expansion and testing
functions and develops the theory for wire structures with Tumped load-
ing and finite conductivity. The forward-scattering theorem is con-
sidered for a target in a conducting medium, and numerical results are
displayed for the echo area, radiation efficiency and impedance of a
straight wire in a conducting medium. As an example of a nonplanar
structure with four straight wires intersecting at a junction, we pre-
sent some poles of the admittance function of a "regular quadripod",
plotted on the complex gamma plane. Appendices consider the near-zone
and far-zone fields of sinusoidal line sources.

II. THE REACTION INTEGRAL EQUATION

Let S denote the closed surface of the wire structure, and let V
denote the interior volumetric region. In the presence of the wire,
an external source (Ji,M;) generates the field (E,H). When radiating
in the homogeneous medium (u.e) without the wire, this source generates
the incident field (Ed’th)' The scattered field is defined as follows:



M E =E-E
()  H = H-H

These fields are considered to be time-harmonic with the same frequency.
The time dependence eJwt or eSt is suppressed.

From the surface-equivalence theorem of Schelkunoff[17], the
interior field will vanish without disturbing the exterior field (E,H)
if we introduce the following surface-current densities

(3) Jo=nxH
(4) M, =Exn

on the surface S. (The unit vector n is directed outward on S.) In
this situation, we may replace the wire structure with homogeneous
medium (u,e) without disturbing the field anywhere. When J. and M
radiate in the homogeneous medium, they generate the field Es’ﬂs in
the exterior and ('54"54) in the interior region.

Now Tet us place a test source (or probe) in the interior region
V and consider its reaction with the other sources. If the test source
has electric current density gm and magnetic current dentsity Mm’

6 [ - s = - ] g - mnes

In Eq. (5) (Eg,Hs) denotes the field generated by (Jg,Ms), and the inte-
grals extend over the surface of the test source. Equation (5) is one
form of the reaction integral equation (RIE). If we enforce Eq. (5)

with a set of delta-function electric test sources, the RIE reduces to
the well-known electric field integral equation (EFIE). If we enforce
Eq. (5) with a set of delta-function magnetic test sources, the RIE
reduces to the well-known magnetic field integral equation (MFIE). Thus,
the RIE is more general than the EFIE or the MFIE. In other words, Eq.
(5) states that the interior test source has zero reaction with the other
sources.

From Eq. (5) and the reciprocity theorem, we obtain another form
of the reaction integral equation:
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where (EW,EW) is the field of the test source radiating in the homo-
geneous medium. This reaction integral equation was developed by
Rumsey[16] in 1954. For thin-wire problems, we shall employ Eq. (6)
with electric test sources.

In the wire structure, Tet each segment have a circular cylindrica]
surface. At each point on the composite cylindrical surface of the wire,
it is convenient to_define a right-handed orthogonal coordinate system
with unit vectors (n,¢ 2) where n is the outward normal vector, & is
directed along the wire axis and

-~

(7) =2 xn .

Thus (n,$,2) correspond directly with the unit vectors (p,$,z) usually
employed in the circular-cylindrical coordinate system.

To simplify the integral equation, we assume the wire radius "a"
is much smaller than the wavelength i, and the wire length is much
greater than the radius. Furthermore, we shall neglect the integrations
over the flat end surfaces of the wire, neglect the circumferential com-
ponent J, of the surface-current density, and consider the axial compo-
nent Jy %o be independent of ¢. (For thick wires, a more detailed treat-
ment is essential for the ¢-dependent current modes and the integrations
over the junction regions and the open ends of the wire. A more elaborate
formulation may also be required if one wire passes within a few diameters
of another, or if a wire is bent to form a small acute angle.) In view of
these approximations the current density on the wire structure is related
to the current as follows:

" ( __I__(Q)

_'rra

(8) J.(2) =

N

where ¢ is a metric coordinate measuring position along the wire axis,
and I(2) is the total current (conduction plus displacement).

On a perfectly conducting wire, the magnetic current density M
vanishes. If the wire has finite conduct1v1ty, we take

(9) E=15 Jg

for the tangential electric field on S, where Zs is the surface imped-
ance for exterior excitation. From Eqs. (4), (7), (8) and (9),



¢ ZI1(2)

x =
n 2ma

(10) = Z

LN
By virtue of Eqs. (8) and (10), Eq. (6) reduces to

L
(11) - Jo 1(2)(E$ - I H$)dz =V

where L denotes the overall wire length and

02) vy =[] e - iy

27
1 - m
(13) E™ = = J T )
L 2w 0
27
(14) T = ot Jo 3H™ do

The sinusoidal reaction formulation for thin wires is based on the
integral Equation (11). In this equation the known quantities are EM,
HM, Vp and Zg. The current distribution I(z) is regarded as an unknown
function. To permit a solution for the current distribution, the follow-
ing sections define suitable test sources and expansion modes.

III. THE SINUSOIDAL TEST SOURCES

For a test source we choose a filamentary electric dipole with a
sinusoidal current distribution. This is not a wire dipole, but merely
an electric line source in the homogeneous medium. The sinusoidal dipole
is probably the only finite line source with simple closed-form express-
jons for the near-zone fields. (See the Appendices.) Furthermore, the
mutual impedance between two sinusoidal dipoles is available in terms
of exponential integrals, and the piecewise-sinusoidal function is
evidently close to the natural current distribution on a perfectly con-
ducting thin wire. These factors governed the choice of test sources.

A typical test source is a V dipole with unequal arm lengths and
terminals at the vertex. The current is zero at the endpoints and rises
sinusoidally to a maximum at the terminals. The terminal current is one
ampere, and the current distribution has a slope discontinuity at the
terminals.



A
—b —_—— 7
Fig. 1. A Tinear test dipole and its sinusoidal current

distribution. The endpoints are at z and Zg
with terminals at z,.

For the Tinear test dipole illustrated in Fig. 1, the current dis-
tribution is I(z) = F(z) where

Z P, sinh v(z-2z,) Z P, sinh y(z,~2)
(15)  F(z) = — — v 2 2
sinh yd] sinh de

P1(z) is a pulse function with unit value for zy < z < zp and zero value

elsewhere. The pulse function P, has unit value for zp < z < z3 and

vanishes elsewhere, The segment lengths are dy = z, - z, and d2 =23 - 2.

The current distribution on a V test dipole is

i % P1 sinh y(z-z]) . %9 P2 sinh y(23—2)
sinh yd] sinh ydz

(16) F(z)

In Egs. (15) and (16), y denotes the complex propagation constant of
the homogeneous exterior medium:

(17) y = s/ue

It is only with this value for y that the sinusoidal test sources have
the advantages mentioned earlier.



The test dipole is located in the interior region of the wire
structure. To simplify the integrations in Egs. (13) and (14), we place
the test dipole on the wire axis.

A typical problem requires not just one but several test dipoles
located at different positions along the wire axis to form an overlap-
ping array. When test dipole m radiates in the homogeneous medium, it
generates the field (EM,HM), Each test dipole has the same frequency
as the true source. Using N test dipoles, Eq. (11) is enforced for each
one. Thus, Eq. (11) represents a system of N simultaneous integral
equations with m = 1,2,-<N. In other words, Eq. (11) requires each test
dipole in the array to have the correct reaction with the true source.

IV.  THE SINUSOIDAL EXPANSION FUNCTIONS

The current distribution on the wire structure is expanded in a
finite series as follows:

N
(OB (ORI RO

where the normalized expansion functions F,(2) are the same as the test-
dipole current distributions in Eq. (16). Since each expansion function
extends over just a two-segment portion of the wire structure, these
functions are subsectional bases. Since N is finite, Eq. (18) may be
considered either as an expansion or an approximation, depending on the
context. In Eq. (18), the coefficients I, are complex constants which
represent samples of the current function I(2). If the wire segments
are short in comparison with the wavelength, the sinusoidal bases
resemble the triangular bases of the piecewise-linear model.

Figure 2 illustrates a current distribution I(2), its two-mode
approximation I'(2) and the normalized expansion functions Fy(%) and
Fo(2). It may be noted that I(2) is a smooth function except at
generators, lumped loads and wire corners. The piecewise-sinusoidal
expansion has slope discontinuities at these appropriate locations and
also at each intermediate sampling point. With favorable circumstances,
the calculated samples I, will be accurate and the corresponding piece-
wise-sinusoidal current distribution I'(2) will be satisfactory for
far-field calculations. For near-zone field analysis, however, one
may abandon the sinusoidal interpolation and model the current distri-
bution I(g) with a smooth function fitting the calculated samples. In
this process, one should not smooth out the slope discontinuities at the
generators, lumped loads or wire corners,

By inserting Eq. (18) into Eq. (11), we obtain the following
system of simultaneous linear algebraic equations:



N
(19) y 1.z =V where m = 1,2,+¢-N

- . m _ m
(200 z JnFn(z) (ET - 2, 1) ar
In Eq. (20), the integral extends over the two segments in the range of
the expansion mode F,. Equation (19) can be expressed in matrix form

as Z I = V where Z denotes the square impedance matrix, I is the current
colum and V is the voltage column.

F () Fo(2)

0 I 2 3

Fig. 2. The expansion functions Fi(2) and Fp(2), the current
distribution I(z) and the two-mode approximation I'(%).

V. THE IMPEDANCE MATRIX

The elements in the open-circuit impedance matrix are denoted
Zyn. By convention, the first and second subscripts indicate the row
and column, respectively. Thus, Zy, denotes the mutual impedance between
test dipole m and expansion mode n.



The expansion modes form an array of overlapping tubular dipoles
Tocated on the wire surface. Each tubular dipole has a sinusoidal dis-
tribution of electric surface-current density and an associated magnetic
surface-current density. If the test dipoles had the same shapes and
positions as the expansion dipoles, the reciprocity theorem could be
invoked to demonstrate the symmetry of the impedance matrix. Since the
filamentary test dipoles differ from the tubular expansion dipoles, our
impedance matrix is not precisely symmetric.

In practice, we regain symmetry by taking a short-cut in calculating
the elements in the impedance matrix. From Eqs. (13), (14) and (20),
Zmn 1s expressed as an integration over the composite circular-cylindrical
surface of the tubular expansion dipole n. The short-cut is accomplished
by approximating the surface integral with a line integral. Thus, to
reduce computational costs, we approximate Zy, by the mutual impedance
between two filamentary V dipoles, one located on the wire axis and the
other on the wire surface. For a straight wire, the mutual impedance
is independent of the circumferential position of the dipole located on
the surface. For a bent wire, however, the mutual impedance is sometimes
quite sensitive to the circumferential position. Via numerical experi-
ments, we have found a suitable position such that the circumferential
integrations in Eqs. (13) and (14) are adequately approximated from a
single sample of the integrand.

With the approximation mentioned above, the impedances Zm? are
given by classical induced emf theory[1,2,3]. The line integral in
Eq. (20) is usually performed with numerical integration. When dipoles
m and n are close together, however, a closed-form expression (in terms
of exponential integrals) is employed for Zmn'

VI. LUMPED LOADS

Suppose a lumped impedance Zp is inserted in the wire structure
at each of the current sampling points. These linear impedances may
be active or passive, identical or assorted. The current through the
load is denoted by Iy, and the voltage drop across the load is Iy Zy.
The effect is the same as that of a voltage generator with voltage InZy.
Thus, a detailed analysis of a lumped load will involve a magnetic friT],
ring or tube as in Section 8.

In the simplest model, the delta gap, the lumped loads simply

introduce a new term in Eq. (19) so the right-hand side becomes
Vm - ImZm. Transposing the last term, we obtain

(21)

I~ ==
—
|
i
<

n



With the delta-gap model, the matrix Zy, is the same as Z., With the
exception of the d1agona1 elements which are

(22) Z =17 +17

Thus, the effect of Tumped loading is accounted for simply by modifying
the elements in the square impedance matrix. If the above delta-gap
approximation is emp]oyed the matrix Z' will have the same symmetry
properties as Z

VII. WIRES WITH FINITE CONDUCTIVITY

The surface impedance Zg will vanish unless the wire has finite
conductivity. From Eq. (20),

- ] m
(23) Zmn = Zmn - Jn Fn E2 de
where
] - m
(24) Zmn = ZS Jn Fn H¢ de

Although Tongitudinal inhomogeneities in the surface impedance and wire
radius offer no difficulties, it is assumed in Eq. (24) and hereafter
that these parameters are independent of 2. The integral in Eq. (24)
extends over the two wire segments in the range of expansion mode Fy.
From Eq. (14) and Ampere's law, a suitable approximation is

F (2)
(25) HS = 73
1 ZS

(26) A Jm ACKAGLE

where region (m,n) is the wire surface shared by dipoles m and n. This
region covers two intersecting segments if m and n are equal. If m and

n differ, the shared region covers at most one wire segment. For a diag-
onal element, m and n are equal and Egs. (16) and (26) yield

10



(27) _ ZS Siﬂh(Zyd1)-2yd] N Sinh(Zde)-Zde
LU T sinh? vdy sinh? vd,

where dy and do are the lengths of the two wire segments occup1ed by

mode m. For an off-diagonal element, a suitable approximation is Zy, = 0
if modes m and n do not share a segment. If they share one segment and
have terminals at the same end of this segment (length d),

[Sinh(ZYd)-Zyd]Zs

(28) yARRE.
M go.a sinh® vd

If modes m and n share one segment and have terminals at opposite ends
of this segment,

(2) . (yd cosh yd - sinh yd)ZS
=

4rya sinh® vd

If Fp and F,, are antiparallel on the shared segment, a minus sign must
be 1nserted on the right-hand side of Egs. (28) or (29)

If Eq. (26) is employed, it is obvious that the square matrix
Zy, Will be symmetric. From Eq. (23) and the reciprocity theorem, the
matrix Zy, (and Zy, with lumped loading) will also be symmetric if the
tubular expansion dipoles are approximated by filamentary dipoles located
on the wire surface. This symmetry alleviates computational expenses and
storage requirements.

VIIT. INSULATED WIRES

For a wire antenna in a conducting medium, the radiation efficiency
can often be improved by insulating all or part of the wire from the
medium. This is accomplished with a thin dielectric layer coated on the
wire surface. This section considers the electromagnetic modeling of
the dielectric layer or shell.

Although the surface-impedance model is simple to program, there

is some uncertainty regarding its adequacy in this application. There-
fore, let us consider a rigorous alternative model.

11



For simplicity, let the dielectric shell have the same permeability
as the ambient medium. From the volume equivalence theorem (Section 11)
the dielectric shell may be replaced with ambient medium and an equivalent
source with electric current density

(30) LJ_ = jw(ez = 5) _E_

where E denotes the electric field intensity in the shell and ¢7 and ¢
are the complex permittivities of the shell and the ambient medium
respectively. From Eq. (30), the current J vanishes outside the region
of the dielectric shell.

Let (E,H) denote the field generated by (J5,M;) in the presence of
the insulated wire. Outside the wire, this field may also be generated
by (J;5.Mi), (Js.Ms) and J, radiating in the homogeneous medium. These
sources, rad1at1ng in the honngeneous medium, generate a null field in
the interior region of the wire. The surface currents (Jq,Mg) are
located on the surface of the wire and are related to the field (E,H).

For the insulated wire, the reaction integral equation (Eq. (6))
is modified by replacing Jj w1th Ji + J. The current J may be regarded
as an additional source which plays much the same role as the 1mpressed
source J;. However, Jj is considered to be a known source whereas J is
unknown because E is unknown. If the dielectric shell is thin, J may
be regarded as a dependent unknown function because it is simp]y related
to the current distribution on the wire.

If the wire has large or perfect conductivity, the electric field
at the wire surface will be essentially in the radial direction, and Ep
can be determined from the charge density on the wire surface. For a
thin shell on a highly conducting wire, a suitable approximation for
the field in the shell is

(31) F=—p 1 where I' denoted dI/dg

= Zanszp

From Egs. (30) and (31),

- ey - e)o I
(32) J = > .
- ™ 82 o]

For an insulated wire, each expansion mode F,(2) has associated with it
a shell of radial e]ectr1c current J. Thus, the mutual impedance Zpyy
between the filamentary test dipole m and the tubular expansion dipole
n has an additional term given by

12



)
33 7 =k F! ™ do d
(33) RACKARIEE

where the integration extends through the dielectric shell in the range
of the expansion dipole n. In deriving Eq. (33), the integration on ¢
was performed with the assumption that J and EM are independent of 4.
In integrating on p, the limits are a and b whfch denote the inner and
outer radii of the dielectric shell.

In the dielectric shell, the test-dipole field M may be approxi-
mated by P

- Fl
m _ m
(34) Ep T 271 Jwep

In Eq. (33) or (34), p denotes distance from the axis of dipole n or m,
respectively. Furthermore, the vector direction of the field component
EM in Eq. (33) generally differs from that in Eq. (34) unless dipoles
m’and n are coaxial. If Eq. (34) is employed, Eq. (33) reduces to

(y-c) £n(b/a)

- 1] ]
A jm RAORSORE

where (m,n) denotes the region of % shared by dipoles m and n. The
approximate result represented by Eq. (35) yields a matrix AZy, which

is symmetric even when some of the wire segments are insulated and others
are bare.

In the sinusoidal reaction formulation, insulation is accounted
for entirely through a modification of the square impedance matrix Zyn.
This modification influences the current distribution, impedance,
efficiency, field patterns and scattering properties. The polarization
current J generates a highly localized field which may be neglected in
far-zone field calculations.

IX.  THE EXCITATION VOLTAGES

From Eq. (12) and reciprocity, the excitation voltages are given
by

(3) v Jm FoE, do

where E; denotes the incident field generated by (gj,ﬂ,) radiating in
the homogeneous medium. The integration extends over Both arms or
segments of test dipole m.

13



If the incident field is generated by a distant source with
spherical coordinates (ro,eo,¢0),

(37)  E; = E, exp(y rer))

~

where E,. is a vector constant, r, is a unit vector from the coordinate
origin—%o the distant source, and r is the radial vector from the origin
to the observation point. From Eqs. (36) and (37), the excitation volt-
ages induced by an incident plane wave are

(38) Vm = Jm FarEs exp (v I?”o) dg

Now consider the field E, generated by test dipole m when radiating
in the homogeneous medium, Using the vector potential, we find the field
at the distant point (ro,eo,¢o) to be

-Yr
0
_ Su e ~
(39) E,= - ———z;F;— Jm [ exp(y Iyro) ds
where the radial component is to be suppressed. From Eqs. (38) and (39),
4qr Yrp
- 0 0
O s i 0

Equations (38) and (40) are useful in plane-wave scattering problems.
If the source (J;,Mj) is near the wire structure, we have a near-zone
scattering probTem and employ Eq. (36)

A wire structure is usually called a scatterer if the source (Jj,M;)
is located some distance away, and an antenna if the source is at the
wire surface. In electromagnetic theory, however, there is no funda-
mental distinction between the scattering problem and the antenna prob-
lem. The antenna problem is merely an extreme example of near-zone
scattering.

If an antenna is fed with a parallel-wire transmission line, the
transmission line is properly considered to be part of the radiating
system., In addition to the TEM mode, higher-order modes will exist on
the transmission line. Thus, moment methods are employed to determine
the current distribution on the transmission line as well as on the
antenna. If a wire antenna is fed through a coaxial cable, the source
may be modeled as a magnetic surface-current density Mj on the aperture
surface of the coaxial feed. The shape of the source Mj is determined
by the details of the terminal region. Thus, a voltage generator may
be modeled as a magnetic disk or a magnetic tube as indicated by Otto[18]
in 1968.

Consider a wire antenna driven by a voltage generator vi located
at one of the current sampling points %y The generator voltage V4 is

14



considered positive if it tends to force a current in the direction of
the expansion mode F (2). From Egs. (12) and (36), the excitation volt-
ages are

— _ m
(41) v, = Lg@im --”m@_$

where the line integral extends over test dipole m and the surface inte-
gral extends over the magnetic source Mj. If the magnetic source is
approximated by a loop encircling the wire and M is uniform around the
loop, then

(42) M. = -4 v
If the loop has small radius b, Eq. (41) reduces to

) A om
(43) m—bvi§i¢ﬂdm

If displacement currents are neglected, Eq. (43) and Ampere's law yield

(44) Vo= v, F (2,)

From Eq. (44), all the excitation voltages Vy vanish except one: Vi = vj.
Although this simple result is often adequate, the accuracy and conver-
gence of the solution may be improved by modeling the source as a magnetic
disk or tube (instead of a loop) and using Eq. (41). The approximate
result in Eq. (44) may be regarded as the delta-gap model.

Now consider a wire antenna fed with a coaxial cable with inner
and outer radii a and b, and let the inner conductor extend to form part
of the antenna with radius a. If the antenna is fed through a large
ground plane, image theory may be employed. In this case, all the wire
segments may have the same radius a. Otherwise the coaxial cable must
be considered to be part of the radiating system, and some of the segments
of the wire antenna will have radius a and others will have radius b.
In either case, the source may be modeled as an annular disk of magnetic
current with inner and outer radii a and b. The magnetic surface current
density will not be uniform over the disk, and a suitable approximation is

3,
(45) M = ST E73)

where p denotes the radial distance from the axis of the disk and Vs is
the TEM—mode voltage in the coaxial cable.
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From Eqs. (41) and (45), it is noted that the excitation voltages
differ from the generator voltages except in the delta-gap approximation.
The relation has the form:

N
(46) V=3 s v

The complex quantities Sp,, are determined via Eqs. (41) and (with
magnetic disks) (45), Thus, the wire antenna has one set of terminal
currents and two sets of terminal voltages. The port voltages v are
related to the port currents Im by

Z I

(47) v = , Zm o

m

nNe~—==2

n

The open-circuit port impedance matrix zyn, must be symmetric if the
media are reciprocal. The moment (or excitation) voltages are related
to the moment currents by

N
(48) Vm = nZ1 Zrm In
The open-circuit moment impedance matrix Zp, need not be symmetric, In
antenna theory and applications, the port voltages and impedances are
of basic importance but the moment voltages and impedances are useful
only as a means for calculating the port parameters. The transformation
from Zgy, to zp, is determined by Eq. (46).

If the test sources were the same as the expansion modes, the
moment voltages Vp and impedances Z would be the same as the port

voltages v, and impedances z_ .

X. RADIATION EFFICIENCY

In this section the frequency is considered real. That is, s = jw
and « is real. Furthermore, let E and H denote the rms field intensities.
Both the wire and the surrounding homogeneous medium may have finite con-
ductivities.

When the wire structure is excited as an antenna, the time-
average power input is the sum of the powers delivered at the various
ports:

(49) Pi = Real v I;

nHe-1=2
—_
-

n
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The time-average power dissipated in the wire antenna is

R L
— . = _s__ . ’
(50) P, = Real ﬁs (E x H*)+ds = = Jo I-1* dg

where S denotes the closed surface of the wire, ds is directed inward
on S, and Rg is the surface resistance. The last form in Eq. (50) is
a convenient approximation based on Egqs. (3), (8) and (9).

Suppose the voltage generators are modeled with tubular magnetic
current sources with radius slightly larger than that of the wire.
The wire need not have any gaps at the terminals. In calculating the
power dissipated in the wire via Eq. (50), we integrate over the wire
surface S and consider the magnetic sources M; to be outside S. The
time-average power radiated from the antenna to the exterior region is

](51) P, = Real i? (E x H*).ds

where surface S' lies just outside surface S so the magnetic sources
M; are in the interior region of S'. From Egs. (49), (50) and (51) and
Poynting's theorem,

(52) Pi = Pd + Pr .

If the ambient medium has finite conductivity, the "radiated
power" P, is actually dissipated in the exterior region. The radiation
efficiency may be defined as the ratio of the power radiated to the
power input:

(53) E. = Pr/Pi .

If Eq. (53) is employed, the antenna will have perfect efficiency unless
it is constructed of dissipative media.

An alternative definition has been proposed by Tsao[19] as follows.
It is reasonable to consider a certain portion of the exterior-region
dissipation to be a propagation phenomenon rather than intrinsically an
antenna problem. Therefore, let the time-average power radiated by
the antena be defined as follows:

(54) P

g = €°F Real ﬁ (E x H¥) = ds

17




where vy = o + jp and the integration covers a spherical surface with
radius r centered at the antenna. With this definition, the radiated
power is independent of the range r in the far-zone region. Now the
radiation efficiency is defined by

(55) Ep = Pp/P;

The definition in Eq. (55) penalizes the antenna not only for power dis-
sipated in the antenna structure but also for excess near-zone losses.
Thus, even a perfectly conducting antenna may have imperfect efficiency.
Furthermore, two antennas (a small loop and a small dipole) may have the
same distant fields (except for polarization) but different near-zone
fields. They will generally have different near-zone losses, input
powers and radiation efficiencies according to Eq. (55). The antenna
with higher efficiency will be preferred except perhaps in near-zone
applications.

Equations (54) and (55) are based on the idea that the normal pro-
pagation losses in the medium will introduce an attenuation factor e-ar
in the fields. This attenuation disappears if the medium is lossless.
If the near-zone losses for a particular antenna exceed this amount,
this antenna will have less than perfect efficiency. Similarly, if
the near-zone losses are smaller than the normal propagation losses, the
antenna efficiency may exceed 100 per cent. This situation may arise
with a large spherical antenna if the interior of the sphere is lossless
and the range r in Eq. (54) is measured from the center of the sphere.

For a given antenna, the near-zone losses and attenuation generally
increase as the conductivity of the medium is increased. In some cases,
however, the time-average power radiated PR will increase with increasing
conductivity of the medium. This occurs when the actual near-zone
attenuation is a slowly varying function of the conductivity and is
over-compensated by the factor e2°r in Eq. (54).

For an antenna in a conducting medium, the directive gain is
defined as follows:

(56) . = bower density at the point (r,6,¢)
d = average power density on the sphere of radius r

In the far zone, the directive gain is independent of the range r and
4y F « F*

(57) 6y =
{ﬁ.g - F* sine do dg

where F is defined by

(58)  E = F(o,5) &

r
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The power gain may be defined as follows [19]:

(59) G (rs0,0) = 4rr2 2% S(r,0,0)/P

where P. denotes the time-average power input and S(r,6,¢) is the time-
average power density at the observation point.

XI.  FORWARD SCATTERING THEOREM

Let a time-harmonic plane wave propagate through a homogeneous con-
ducting medium (uy,eq) and illuminate an inhomogeneous conducting target
(use).  The frequency is considered real, and E and H denote the rms
field intensities.

To simplify the discussion, let the target and the medium have
the same real permeability ug. Let ¢y and edenote the complex permit-
tivity of the medium and the target, respectively. The parameters Ho

-and e_ should not be confused with those of free space

0

Let (E;j,Hj) denote the incident plane-wave field, (Eg,He) the
scattered f1e1d and (E,H) the total field. In 1953, Rhodes[‘ﬁ] used
Maxwell's equations to demonstrate that the scattered field may be
generated by the equivalent electric current density

(60) geq = Jule -~ e)) E

radiating in the ambient medium (ug,eg). Using the vector potential and
the "volume equivalence theorem" of Rhodes, we find the far-zone scattered
field as follows:

-Juug e’

(61) E = —aw — JJJV deq exp(y rf°;s) dv'

where vy = juwvugeg » r' is a vector from the origin to the source-point,
Fs is a unit vector From the origin toward the distant observation point,
and V denotes the volumetric interior region of the target.

Let P denote the "total time-average power" defined as follows:
(62) P = Real JJJV geq - E¥ dv

In the forward-scattering situation, the incident plane wave travels
in the direction of rs and
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(63) E; =E exp(-yr - r)

(64) P = Real JJJ y Jeq * B expl(-a + jg) r » r1dv.

From Eq. (61)
yr

. ~quo e . ) Lo '
S S m\, Joq'E5 expLlo + Jo) xiory 1 dv

The integrals in Eqs. (64) and (65) are identical except for a minus
sign. Therefore, we define a "modified forward-scattered field" EM as
in Eq. (65) but with o replaced by (-a) in the integrand. Thus, the
total time-average power is related to the modified forward-scattered
field as follows:

. jamr e moy
(66) P = Real [ T Eg-EX

Equation (66) states the forward scattering theorem for a target in a
homogeneous conducting medium. If the medium is lossless, o vanishes
and EQ can be replaced with Ec. Thus, Eq. (66) reduces correctly to

the well-known theorem for a target in a lossless medium where P denotes
the time~average power extracted from the incident plane wave. That

is, P is the sum of the time-average power dissipated in the target and
the time-average power scattered by the target.

Since E, = E - E. Eq. (62) yields:

(67) P=Py+P
where

(68) Py = Real fj[v geq-gf dv
(69) P, = - Real jJJV geq.gg dv

From Poynting's theorem, Eq. (69) seems reasonable as a definition of
the time-average scattered power. When radiating in the homogeneous
medium (ng.eq) with the incident plane wave removed, ge is the source
of the scattered field. 9
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From Eqs. (60) and (68),

(70) Py = JJJV o EE* dv - o JJJV E-E* dv

where o and o, denote the conductivities of the target and the medium,
respectively. The first integral in Eq. (70) is clearly the time-
average power dissipated in the target. The last integral is not so
easy to interpret, but the integrand may be expanded as follows:

(7]) E:Ef = E

«E* JE* CE*
oEX o+ E Es + E.-ET +

From the last term in Eq. (70) and the first two terms in Eq. (71), the
time-average power budget must account for the power dissipated by the

incident plane wave and the scattered field, respectively, in region V

with homogeneous medium (uo,eo). No interpretation is offered for the

last two terms in Eq. (71), but their sum is real.

The last term in Eq. (70) vanishes if the ambient medium is loss-
less, and it may be negligible if the target conductivity greatly exceeds
the conductivity of the medium. In these cases, the total power P is
simply the sum of the power dissipated in the target and the power
scattered by the target.

For a target in a conducting medium, the forward-scattering
theorem does not appear to be useful for experimental measurements
because the modified scattered field EQ is not available. This quantity
is calculable, however, so the theorem may find application in the com-
putation of extinction cross sections.

For a target in a homogeneous conducting medium, it is convenient
to define the radar cross section (or echo area) as follows:

(72) s = limit 4mr? e20F S,/S;

oo !

where Sg and Sj denote the time-average power densities in the scattered
and incident fields, respectively. When echo-area data are presented
for a specific target, it is necessary to specify the location of the
point in space where Si is evaluated and from which the range r is
measured. Equation (72) reduces to the standard definition for a target
in a lossless medium as the attenuation constant o tends to zero. With-
out the factor e4®r, the echo area would vanish for every finite target
in a conducting medium.
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The factor e2oT in Eq. (72) compensates for the normal attenuation

of the outward-traveling scattered wave. Because of this factor, a low-
loss dielectric sphere may have a large echo area when immersed in a
conducting medium. If the range r is measured from the center of the
sphere, Eq. (72) allows for attenuation starting from the center whereas
the actual attenuation begins at the surface of the target. For a given
target, the near-zone losses in the scattered field will generally in-
crease as the conductivity of the medium is increased. In some cases
the near-zone attenuation will increase more slowly than the "normal
rate", the exponential factor in Eq. (72) will overcompensate, and the
echo area will increase with increasing conductivity of the medium.

This phenomenon is closely related to that previously discussed for the
radiation efficiency as defined in Eq. (55).

The absorption cross section is defined by the ratio of the time-
average power absorbed (dissipated) in the target and the time-average
power density of the incident plane wave. The scattering cross section
is the ratio of the time-average power scattered and the time-average
power density of the incident wave. The extinction cross section is the
sum of the absorption and scattering cross sections. If the scattered
power is defined by Eq. (69), these cross-section definitions are suitable
even for a target in a conducting medium.

Now let us consider briefly the scattering problem for a thin-
wire structure with conductivity much greater than that of the ambient
medium. Suppose we have already calculated the current distribution
I(2) induced on the wire by an incident plane wave. The same current
distribution may be induced by a set of equivalent port-voltage generators
vp inserted at the various ports along the wire, and these voltages are
readily calculated. Let P denote the time-average power input to the
wire system as defined by Eq. (49). This power input must be the sum
of the power dissipated in the wire and the power radiated or scattered
from the wire. The power dissipated is readily calculated via Eq. (50),
and the power input from Eq. (49). Finally, the scattered power is
obtained from P; - Py. Dividing by the incident power density, we
obtain the absorption, scattering and extinction cross sections.

XII. NUMERICAL RESULTS

In comparison with antennas and scatterers in free space, relatively
1ittle data are available for structures in a conducting medium. There-
fore, it is not necessary or desirable to choose a complicated configu-
ration to illustrate trends. Figure 3 illustrates the backscatter echo
area of a perfectly conducting straight wire for broadside incidence with
Eq. (72). For defining the range r and the incident power density S;,
the coordinate origin is located at the center of the wire. At the
highest frequency (100 MHz), the wire length is approximately equal to
the wavelength in the ambient medium. As the conductivity of the medium
increases, the echo area decreases at first and then increases. This is
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not surprising, in view of the discussion following Eq. (72). It seems
reasonable that the highly resonant properties of the thin straight wire
should decrease and finally disappear. All the numerical results pre-
sented in this section were calculated with the sinusoidal reaction
technique. For these calculations, the wire was divided into a number
J of segments where J = 6 or

(73) J = 3.2 |yh]|

(whichever is larger) where h denotes the half-length of the wire.

a— T T T Tnl T T T 1

3 WIRE LENGTH: Im
DIAMETER: 0.0Im
MEDIUM: €=10€, —

K =Fo

———

N
I

ECHO AREA (SQUARE METERS)

| I
%616 20 30 40 50 60 70 80 90 100

FREQUENCY (MHz)

Fig. 3. Broadside backscatter for uninsulated perfectly-conducting
straight wire in homogeneous medium with conductivity o
in mhos/m.
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Fig. 4. Radiation efficiency of uninsulated perfectly-conducting
center-fed Tinear dipole in a homogeneous medium with
conductivity o in mhos/m,

Figure 4 illustrates the radiation efficiency of a perfectly-con-
ducting center-fed linear dipole as defined by Eq. (55). The radiated
power was calculated via Eq. (54) by integrating the power density over
a far-zone sphere. Again, the center of the wire was selected as the
coordinate origin for measuring the range r. The power input was obtained
from the terminal current and voltage. The low efficiency observed in
the low-frequency range is attributed to the excess near-zone Tosses
of the short uninsulated dipole. As the conductivity of the medium
increases, the efficiency decreases at first and then increases. This
is not surprising in view of the discussion following Eq. (55).
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Figures 5 and 6 show the resistance and reactance of the center-
fed Tlinear dipole mentioned above.

Before we introduce the next figure, it is necessary to define some
terms. In common language, a tripod is a figure with three straight legs
intersecting at a common junction. Thus, it is reasonable to define a
quadripod as a figure with four straight legs (or arms) intersecting at a
common junction, By analogy with the regular tetrahedron or a regular
polygon, the regular quadripod has four arms and each arm has the same
length h. Furthermore, each arm makes the same angle of 109.5 degrees with
each of the other arms. The regular quadripod is a nonplanar structure.

Figure 7 illustrates five poles of the admittance of a perfectly-
conducting regular quadripod, plotted on the complex vh plane. These
poles are invariant with respect to the location of the terminals on
the thin-wire structure, although some of the poles will not be observed
if the terminals are located at the junction. These admittance poles
are also the poles of the scattering function for near-zone or far-zone
scattering, and they are independent of the incidence direction.

For a perfectly conducting structure, scaling theory indicates
that the poles may be presented without specifying the frequency or the
parameters of the ambient medium. The fundamental quantity vh is
dimensionless, and it does not matter whether the complex values of y
result from a complex ambient medium or the choice of a complex frequency.
Thus, Fig. 7 may be interpreted as the complex frequency plane or the
complex medium plane, but the range of validity is more general than
either. Some of the quadripod poles in Fig. 7 are the same as those
of a simple bent wire (the V antenna) with an angle of 109.5 degrees.

For an imperfectly conducting target, scaling is much more
restrictive. For example, one might plot the poles of a copper wire
immersed in sea water. These poles might be plotted on the complex
frequency plane, and it would be necessary to specify the ambient

medium and the target medium. In calculating these poles, one must
have experimental or theoretical data for the complex permittivity of
both media at complex frequencies.

Figures 8 and 9 show the radiation efficiency of a dipole and
a lToop in free space as a function of the wire conductivity. Finally,
Figs. 10 and 11 illustrate the conductance and susceptance of bare
and insulated dipoles in free space.

Although experimental confirmation is not available for the
numerical results presented here, the examples concern antennas and
scatterers with simple shapes to encourage others to compare with their
calculations or measurements. The numerical results were obtained with
a computer program that has been tested extensively with many antennas
and targets in free space. Pole plots obtained with this program show
excellent agreement with those of Tesche[21] for a straight wire. The
program has been employed to analyze the transmission of short pulses
between coupled bow-tie antennas buried in the earth, with excellent
experimental verification. For a Tinear dipole immersed in a salt
water solution, our admittance and impedance calculations show close
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Fig. 5. Resistance of uninsulated perfectly-conducting center-fed
linear dipole in a homogeneous medium with conductivity
o in mhos/m.
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Fig. 7. Calculated poles of the admittance of a perfectly-conducting
regular quadripod, plotted on the complex yh plane.

agreement with measurements by Iizuka and King[22] and Siegel and
King[23] when va is less than 0.07 and the dipole length exceeds the
wire diameter by a factor of at least 30. This justifies confidence
in the formulation, the computer program and the numerical results.
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Fig. 8. Radiation efficiency of center-fed dipole in free space.
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Wire diameter: 1/16 inch solid.
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The parameter is the conductivity in mhos per meter.
Wire diameter: 1/16 inch solid.

30



'8 — T T T T 17 T T T ]
6 DIELECTRIC WIRE DIAMETER: d= Y00

- %?:gfg OUTER DIA. OF DIELECTRIC

I B -— cuhs

= DIPOLE \ :ER4MLTTIVITY OF SHELL

= N .

:l' 12}~ ‘ T —

= , \

— | L |

o |0 , \

g \ {

=z 8 , -

<

-

g 6} l —

z :

=z

O

o 4 ’ _
2 / _
N TN ST . N NN NN N NN R

o) 0.2 0.4 0.6 0.8 1.0
LENGTH Y/
Fig. 10. Conductance of perfectly-conducting center-fed dipole

in free space.

31



I2 I T | 1 T I I I I
0 DIELECTRIC WIRE DIAMETER: d= Y/j00
- %?:‘JEED OUTER DIA. OF DIELECTRIC
a BARE SHELL: D=2d
T - | PERMITTIVITY OF SHELL ~
3 DIPOLE ZRA
24 s} |€= <o _
o K
5 |
o \
: |
< >
-

& of= ¢
u
(&)
@ \
5 -2}
? \

-4} \

_e A N

0 0.2 0.4 0.6 0.8 1.0

LENGTH LY/

Fig. 11. Susceptance of perfectly-conducting center-fed dipole
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XIII. SUMMARY

Rumsey's reaction integral equation is discussed, and it is pointed
out that it is more general than the electric field integral equation
or the magnetic field integral equation. The forward scattering theorem
is developed for an arbitrary target in homogeneous conducting medium,

The sinusoidal reaction formulation is presented for an arbitrary
thin-wire structure in a conducting medium. The wire structure may have
finite conductivity and lumped loading, and some portions of the wire
may be insulated and others bare. The analysis is performed in the
real or complex frequency domain, and it covers both the antenna and
the scattering situations. A fundamental distinction is indicated
between the moment voltages and impedances and the multiport voltages
and impedances.

Numerical results are included to illustrate the backscattering
properties of a straight wire as a function of the frequency and the
conductivity of the medium. Similar graphs illustrate the radiation
efficiency and impedance of a center-fed linear dipole. Several poles
are plotted on the complex yh plane for the admittance function of a
"regular quadripod". Appendices present the near-zone and far-zone
fields of a sinusoidal electric monopole in a conducting medium.
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APPENDIX I
NEAR-ZONE FIELD QOF SINUSOIDAL LINE SOURCE

Consider an electric line source located on the z axis with end-
points at z and zp as shown in Fig.12, Two of these "monopoles” can
be arranged to form a V dipole. The filamentary V dipole is of interest
because it is employed as the test source in the sinusoidal reaction
technqiue for thin-wire structures.

Fig., 12. An electric line source on the z axis and the observation
point at (p,z).

Let the electric monopole have the following current distribution:

I1 sinh y(z2 -z) + I2 sinh y(z - 21)

W 1@ - e

where Iy and I, are the endpoint currents, vy is the complex propagation
constant of the medium, d = zp - z7 is the source Tength and the time
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dependence eSt is understood. The medium is considered to be homogeneous
with complex parameters y and e. The cylindrical components of the field
are E,. =0 and

¢
-yR -yR
- n 1 2y
(75) Ep = m [(I-l e - 12 e ) sinh Yd
-YR,
+ (I] cosh yd -~ 12) e €S
“yR,
+ (I2 cosh yd-I]) e cosez]
—'YR2
- n e
(76) Ez " %y sinh vd [(Il - I cosh yd) R,
~yR;
e
+ (I2 - I] cosh yd) R] ]
; R

H= gosmrg L(I; cosoy sinh yd + I, cosh vd - I,) e

-vR
- (I2 cos 6, sinh vyd - I2 cosh vd + I]) e 2]

where n is the intrinsic impedance of the medium:
(78) n= Jule

These expressions exclude the field contributions from the point charges
at the endpoints of the 1line source, since these charges disappear when
two monopoles are connected to form a dipole. For a V dipole, scalar
addition applies to the cartesian components (E_,E ,E_) of the field
generated by each of the monopoles. Ty oz
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APPENDIX II
FAR-ZONE FIELD OF SINUSOIDAL LINE SOURCE

Consider an electric line source with lendth d and endpoints at
(x1,¥1,27) and (xz,yz,zz). The coordinates of any point on the source
are

(79) X = Xy + & COs q

(80) y =y +2cos B

(81) Z =2y % 8 COS vy

where cos a, cos g and cos y are the direction cosines of the ¢ axis,
and ¢ is the distance along the source measured from the endpoint (x],
y],z]). Let the current distribution on the monopole be
I] sinhy (d - 2) + I2 sinh v2

sinh vd

(82) I(2) =

where I1 and I, are the endpoint currents. The far-zone field of this
source 1is

(83) E, = (cosa cos6 cos¢ - COSB COSO siny - cosy sing) E,
(84) E¢ = (-coSa sing + cosB cos4) E2
where
-yr Yf
(85) E = ne [(€¥9% - g sinh yd - cosh vd) I, e 1

Y agr (]-92) sinh ~d
_Ygd . 2
+ (e + g sinh yd - cosh vd) I, e ]

(86) f

1° % sing cos¢g + 2 sing sing + Zy cosg
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(87) f, = X, sine cos¢ +y, sine sing + z, €0S9
(88) g = cOSo Sine cos¢ + cosg sing sing + cosy coso

and (r,6,4) are the spherical coordinates of the observation point.
Although y denotes the propagation constant and cos y is a direction
cosine, no confusion should arise.

For a sinusoidal V dipole, each monopole has different direction
cosines but scalar addition applies to the field components Ee and E
of each monopole. ¢
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